Search results for "Diethylaluminium chloride"
showing 3 items of 3 documents
Propyl substituted 4-arylimino-1,2,3-trihydroacridylnickel complexes: Their synthesis, characterization and catalytic behavior toward ethylene
2015
Propyl substituted 4-arylimino-1,2,3-trihydroacridylnickel dihalide complexes were designed and prepared by metal-induced template reaction with NiCl2 center dot 6H(2)O or (DME)NiBr2. They were characterized by infrared spectroscopy and elemental analysis. Single crystal X-ray crystallography of representative complex Ni3 revealed a distorted trigonal bipyramidal geometry around nickel. The catalytic activities of the title nickel complexes were negatively affected by propyl substituent on their backbone when comparing with the results by unsubstituted ones. With the activation of diethylaluminium chloride, all nickel complexes exhibited moderate activity (up to 5.10 x 10(5) g mol(-1)(Ni) h…
Vanadium-based Ziegler-Natta catalyst supported on MgCl2(THF)2 for ethylene polymerization
1996
A supported magnesium‐vanadium‐aluminium catalyst was prepared by depositing –with the use of a milling technique–VOCl3 on the MgCl2(THF)2 support and subsequent activation with diethylaluminium chloride. Catalytic activity of the obtained system for ethylene polymerization was evaluated as a function of Mg/V and Al/V ratios as well as catalyst ageing time and polymerization temperature. High concentrations of THF in the catalytic system and considerable excess of an organoaluminium co‐catalyst were found to have no deactivating action on vanadium active sites. The catalyst obtained is stable and its activity for ethylene polymerization is high. It yields polyethylene with higher molecular …
Achieving branched polyethylene waxes by aryliminocycloocta[b]pyridylnickel precatalysts: Synthesis, characterization, and ethylene polymerization
2017
Cycloocta[b]pyridin-10-one was prepared to form the corresponding imino derivatives, which then reacted with (DME)NiBr2 to form 10-aryliminocycloocta[b]pyridylnickel bromides (Ni1–Ni5). The new compounds were characterized by means of FT-IR spectroscopy as well as elemental analysis and the organic ligands were also analyzed by the NMR measurements. Furthermore, the molecular structure of a representative complex Ni3 was determined by the single crystal X-ray diffraction, indicating the distorted tetrahedral geometry around the nickel atom. Upon the activation with either methylaluminoxane (MAO) or diethylaluminium chloride (Et2AlCl), the title nickel complexes exhibited high activity in et…